
Decomposition cheatsheet

Choosing a layer

Shared

Code that is not specific to your 
application, code that serves 
as a foundation.

Self-check question
Can this code be used in a pizza shop 
app or an online bank?


Example: a dropdown menu can appear 
in a pizza shop app, a social media post 
probably can’t.

Entities

Code that represents a real-life concept 
that your app is working with.

Self-check question
When describing your app, does this 
word appear as a subject or an object? 
Do your users/clients understand that 
word?


Example: users can write posts.  
Clients want to be able to add videos 
to their posts.

Features

Interactions that provide real-life value 
to your app’s users, the things people 
want to do with your entities.

Self-check question
When describing to a stranger what your 
app does, do you mention these actions?


Example: users can write and edit posts. 
Posts can be configured to auto-delete 
after 5 minutes.

Widgets

Code that combines the layers below 
to form meaningful blocks, interactive 
and complete with data.

Self-check question
When looking at your app’s UI 
from a distance, does this stand out 
as a complete “block”?


Example: A list of posts with pagination 
and the header appear as standalone 
blocks.

Pages

Entire screens of your application, built 
mostly by combining the layers below.

Similar to widgets, but on a larger scale.

Self-check question
Is this code ready to be plugged 
into the router and work for users as is?


Example: the home page of an online shop 
with login, fresh deals, categories, search, 
etc.

App

Infrastructural code that makes your app 
actually work.

Self-check question
Is this something your framework 
or technical stack needs for your app 
to function?


Example: an i18n provider and a router 
make the app work and display sensible 
text to the user.


